翻訳と辞書
Words near each other
・ Kirsty Pealling
・ Kirsty Soames
・ Kirsty Strain
・ Kirsty Sutherland
・ Kirsty Sword Gusmão
・ Kirsty Wade
・ Kirsty Wark
・ Kirsty Williams
・ Kirsty Williams (drama)
・ Kirsty Yallop
・ Kirsty Young
・ Kirsty's Home Videos
・ Kirsty-Leigh Porter
・ Kirstyn McDermott
・ Kirstyn Pearce
Kirszbraun theorem
・ Kirsztajnów
・ Kirt
・ Kirt Bennett
・ Kirt Manwaring
・ Kirt Niedrigh
・ Kirt Ojala
・ Kirt Thompson
・ Kirt, West Virginia
・ Kirta
・ Kirtachi
・ Kirtads
・ Kirtan
・ Kirtan Ghoxa
・ Kirtan Sohila


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kirszbraun theorem : ウィキペディア英語版
Kirszbraun theorem
In mathematics, specifically real analysis and functional analysis, the Kirszbraun theorem states that if ''U'' is a subset of some Hilbert space ''H''1, and ''H''2 is another Hilbert space, and
:''f'' : ''U'' → ''H''2
is a Lipschitz-continuous map, then there is a Lipschitz-continuous map
:''F'': ''H''1 → ''H''2
that extends ''f'' and has the same Lipschitz constant as ''f''.
Note that this result in particular applies to Euclidean spaces E''n'' and E''m'', and it was in this form that Kirszbraun originally formulated and proved the theorem. The version for Hilbert spaces can for example be found in (Schwartz 1969, p. 21). If ''H''1 is a separable space (in particular, if it is a Euclidean space) the result is true in Zermelo–Fraenkel set theory; for the fully general case, it appears to need some form of the axiom of choice; the Boolean prime ideal theorem is known to be sufficient.
The proof of the theorem uses geometric features of Hilbert spaces; the corresponding statement for Banach spaces is not true in general, not even for finite-dimensional Banach spaces. It is for instance possible to construct counterexamples where the domain is a subset of R''n'' with the maximum norm and R''m'' carries the Euclidean norm. More generally, the theorem fails for \mathbb^m equipped with any \ell_p norm ( p \neq 2) (Schwartz 1969, p. 20).〔
For an R-valued function the extension is provided by \tilde f(x):=\inf_f(u)+\text(f)\cdot d(x,u), where \text(f) is f's Lipschitz constant on U.
==History==

The theorem was proved by Mojżesz David Kirszbraun, and later it was reproved by Frederick Valentine, who first proved it for the Euclidean plane. Sometimes this theorem is also called Kirszbraun–Valentine theorem.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kirszbraun theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.